Curriculum

- Sekundarstufe I Jahrgang 7
- Sekundarstufe I Jahrgang 8
- Sekundarstufe I Jahrgang 9
- Sekundarstufe I Jahrgang 10

Sekundarstufe I - Jahrgang 7

Stoffverteilung Physik Klasse 7

Neuer Rahmenlehrplan, gültig ab 2017/18

Umfang	Themenbereiche ^[1]		Inhalte	Kompetenzen	Experimente
3 UE	3.0	Ø	Begriff der	Erkenntnisse	LE: Handexperimente
180 min	Einführung ins Fach		Naturwissenschaft		zum Einstieg
		Ø	Teilgebiete und		ins Fach Physik
			Bedeutung der Physik		
		Ø	Arbeitsweisen des		
			Physikers		
7 UE	3.1	Ø	Masse, Dichte,	Fachwissen,	SE: Bestimmung der
420 min	Thermisches		Teilchenmodell	Erkenntnisse,	Dichte
	Verhalten von	Ø	Temperaturbegriff und	Kommunizieren	LE: Ausdehnung
	Körpern		Kelvinskala		fester Körper
		Ø	Längenänderung fester		(z.B. Metallrohr oder
			Körper		Draht) und
		Ø	Volumenänderung von		Flüssigkeiten bei
			Gasen und		Temperaturerhöhung
			Flüssigkeiten		SE: Bimetallstreifen
		Ø	Beschreibung der		
			Aggregatszustände		
			im Teilchenmodell		
7 UE	3.4	Ø	Zusammenhang zw.	Fachwissen,	LE/SE: Experimente
420 min	Thermische Energie		thermischer Energie	Erkenntnisse,	zur
	und Wärme		und Wärme	Kommunizieren	Wärmestrahlung
		Ø	Schmelzwärme,		Wärmeleitung,
			Verdampfungswärme,		Wärmeströmung
			Verdunstungskälte		(Konvektion im
		Ø			geschlossenen
			Aggregatszustandsän		Glasrohr)
			derungen und ihre		
			Deutung mithilfe von		
			einfachen		
			Teilchenvorstellungen		
		Ø	Wärmeübertragung:		
			Wärmeleitung,		
			Wärmeströmung,		
			Wärmestrahlung		
		Ø	Wärmeleitung im		
			Teilchenmodell		

4 UE 240 min	3.5 Elektrischer Strom und elektrische Ladung	Ø Ø Ø	Einfacher Stromkreis Ladungsbegriff und Anziehung /Abstoßung zw. elektrisch geladenen Körpern Elektrische Energiequellen Elektrischer Strom als bewegte elektrische Ladung Wirkungen des elektrischen Stroms Darstellung von einfachen elektrischen Stromkreisen mithilfe von Schaltsymbolen Reihen- und Parallelschaltung	Fachwissen, Erkenntnisse, Kommunizieren	LE: Licht und Wärme eines strom- durchflossenen Drahts (Veranschaulichung der Wirkungen des elektrischen Stroms) LE: thermische Sicherungen LE: Kurzschluss; Relais SE: Aufbau von Stromkreise
5 UE 300 min	3.6 Elektrische Stromstärke, Spannung, Widerstand und Leistung (Teil I)		Ø Stromstärke als physikalische Größe Ø Spannung als physikalische Größe und Antrieb des elektrischen Stroms Ø Ohmsches Gesetz Ø Stromstärke und Spannung in Reihen- und Parallelschalt ung	Fachwissen, Erkenntnisse, Kommunizieren	SE: Spannungsmessung an verschiedenen Spannungsquellen SE: Stromstärkemessung en an verschiedenen Geräten SE: Aufnahme des Stromstärke- Spannung- Zusammenhangs eines Bauelements

Fächerübergreifende Kompetenzentwicklung – Bezüge zum BC Sprachbildung und BC Medienbildung und übergreifende Themen

Einüben grundlegender physikalischer Arbeitstechniken Entwicklung der Fachsprachenkompetenz

MINT-Vorhaben (fakultativ):

Projekt Heißluftballon; Wir erfinden den HLB neu; Bau eines HLB; Stationenlernen

Besuch des PhysLab: Teilnahme an der Mitmachausstellung "Eine Reise durch die Physik"

Klasse 7: 1 UE = 60 min

[1] Inhaltliche Themenbereiche aus Teil C des Rahmenlehrplans

Sekundarstufe I - Jahrgang 8

Stoffverteilung Physik Klasse 8 Neuer Rahmenlehrplan, gültig ab 2017/18

Umfang	Themenbereiche	Inhalte	Kompetenzen	Experimente
3 UE 225 min	3.5 Elektrischer Strom und elektrische Ladung (Teil II)	Modell elektrisches Feld; Influenz Modell für elektrische Leitungsvorg änge in Metallen	Fachwissen, Kenntnisse, Kommunizieren	LE/SE : - Experimente zur Influenz; - Elektroskop
7 UE 525 min	3.6 Elektrische Stromstärke, Spannung, Widerstand und Leistung (Teil II)	Elektrischer Widerstand als physikalisch e Größe und elektrisches Bauelement Elektrischer Widerstand in Abhängigkeit von der Temperatur Spezifischer Widerstand Elektrische Leistung und Energie als physikalisch e Größe	Fachwissen, Kenntnisse, Kommunizieren	LE: - I-U-Aufnahme bei verschiedenen Materialien LE: - Bestimmung der elektrischen Arbeit und Leistung (Energieverbra uch)
3 UE 225 min	3.9 Magnetfelder (Teil I)	Dauermagne te Modell Elementarm agnet Modell der magnetische n Feldlinien Vergleich elektrisches und magnetische s Feld	Fachwissen, Kenntnisse, Kommunizieren	LE/SE: - magnetische Wirkungen - Kompass LE: magn. Felder

375 min	3.2 Wechselwirkung und Kraft	- Itiaic als		SE: - Zusammenhang zw. Kraft und Längenänderung einer Schraubenfeder (hooksches Gesetz) - Messen von Kräften mithilfe von Federkraftmesser oder Kraftsensor
---------	------------------------------------	--------------	--	---

8 UE 600 min	3.3 Mechanische Energie und Arbeit	 Energiebegri ff, Energieform en (qualitativ), potentielle Energie (quantitativ) Mechanische Arbeit Arten der mechanische n Arbeit Goldene Regel der Mechanik Zusammenh änge zwischen Arbeit, Energie und Leistung Energieerhal tungssatz Energiebetra chtung in einfachen Systemen unter Einbeziehun g von Energiesche men 	Fachwissen, Kenntnisse, Kommunizieren	SE: - Untersuchung zur Goldenen Regel der Mechanik (an ausgewählten Beispielen: Hebel, Flaschenzug, geneigte Ebene) - experimentelle Bestimmung von mechanischer Arbeit und mechanischer Leistung
-----------------	------------------------------------	--	---------------------------------------	---

Fächerübergreifende Kompetenzentwicklung – Bezüge zum BC Sprachbildung und BC Medienbildung und übergreifende Themen

• Textverständnis – aus Texten gezielt Informationen entnehmen und graphische Darstellungen darstellen und erläutern; Inhalte von Texten zusammenfassen

MINT-Vorhaben: ?

Klasse 8: 1 UE = 75 min

[1] Inhaltliche Themenbereiche aus Teil C des Rahmenlehrplans

Sekundarstufe I - Jahrgang 9 Stoffverteilung Physik Klasse 9

Neuer Rahmenlehrplan, gültig ab 2017/18

Themenbereiche:

- 3.9 Magnetfelder und elektromagnetische Induktion (Teil II) 10 UE (600 min)
 - Elektromagnet
 - o Kräfte auf stromführende Leiter im Magnetfeld
 - Aufbau und Funktionsweise Elektromotor
 - Induktionsgesetz (qualitativ)
 - o Erzeugung einer Wechselspannung mit dem Generator
 - o Aufbau, Funktion und Spannungsübersetzung eines unbelasteten Transformators
- 3.11 Energieumwandlung in Natur und Technik 12 UE (720min)
 - Energieumwandlungen und Energieübertragungen
 - o Berechnung von potentiellen und kinetischen Energien und Arbeit
 - o Thermische Leistung einer Wärmequelle
 - o Berechnung von Wärmen, spez. Wärmekapazität
 - o Wirkungsgrad und Energieflussschemen bei Energieumwandlungen
 - o Problemlösung durch quantitative Energiebetrachtungen
- 3.10 Radioaktivität und Kernphysik 12 UE (720 min)
 - o Arten der natürlichen radioaktiven Strahlung
 - Absorptionsvermögen (qualitativ)
 - o lonisierungsvermögen
 - o Radioaktive Strahlung aus dem Atomkern
 - o Aktivität als physikalische Größe
 - Halbwertszeit
 - Radioaktive Strahlung in unserer Umwelt
 - Biologische Wirkung radioaktiver Strahlung (qualitativ)
- 3.7 Gleichförmige und beschleunigte Bewegung 6 UE (360 min)
 - Bewegung, Bewegungsarten und Bezugssystem
 - o Unterscheidung von Momentan- und Durchschnittsgeschwindigkeit

 Beschreibungen von Bewegungen mithilfe der Größen Geschwindigkeit und Beschleunigung

Experimente:

- Kräfte auf stromführende Leiter
- Nachweis von Induktionsspannungen
- Spannungsübersetzung am Transformator
- Abhängigkeiten der Wärme von der Masse, vom Stoff und der Temperaturänderung
- Bestimmung des Wirkungsgrades von Energieumwandlungen
- Nachweis natürlicher radioaktiver Strahlung (Geigerzähler)
- Realexperiment oder Modellexperiment zum radioaktiven Zerfall, z.B. Bierschaumversuch, Computersimulation

Fächerübergreifende Kompetenzentwicklung:

- Verbraucherbildung/Nachhaltigkeit:
 - Möglichkeiten der Energieeinsparung
 - o Energieumwandlung in Kooperation mit Chemie, Geographie und Ethik
- Medienbildung:
 - Präsentationstraining
 - Multimediale Gestaltungselemente für eine Präsentation (Text, Audio, Bildmaterial, Video) nach vorgegebenen Kriterien auswählen
 - Eine Präsentation von Lern- und Arbeitsergebnissen in multimedialen Darstellungsformen gestalten
 - Computergestützte Auswertung von Messergebnissen

MINT-Vorhaben (fakultativ):

- Auto-Projekt: Wir erfinden das Auto neu; Bau eines Modellautos; Stationenlernen
- Dahlem Welt der Wissenschaft. Die Entdeckung der Kernspaltung: Exkursion zum Originalschauplatz Hahn-Meitner-Bau der FU-Berlin
- Vakuumlabor-Projekt (DESY): Experimentieren und Erklärvideos drehen

Sekundarstufe I - Jahrgang 10

Stoffverteilung Physik Klasse 8 Neuer Rahmenlehrplan, gültig ab 2017/18

Umfang	Themenbereiche		Inhalte	Kompetenzen	Experimente
10 UE	3.7	Ø	Bewegungsgesetze der	Fachwissen,	SE/LE: Untersuchung
600min	Gleichförmige und		gleichförmigen und	Kenntnisse,	der Abhängigkeit
	beschleunigte		der gleichmäßig	Kommunizieren,	s(t) für
	Bewegung		beschleunigten	Bewerten	gleichmäßig
			Bewegung und		beschleunigte
			zugehörige		Bewegungen,
			Diagramme		z.B. mithilfe der
		Ø	Deutung von		
			Bewegungen mithilfe		Luftkissenbahn oder
			von s(t)- und v(t)-		
			Diagrammen		Bewegungssensoren
		Ø	Freier Fall, Bestimmung		SE: Untersuchung von
			der		Fallbewegungen
			Fallbeschleunigung		
		Ø	waagerechter Wurf als		
			zusammengesetzte		
			Bewegung (qualitativ)		
		Ø	zufällige und		
			systematische Fehler		
8 UE	3.8		Trägheitsgesetz	Fachwissen,	SE/LE: Versuche zur
480 min	Kraft und	Ø		Kenntnisse,	Trägheit;
	Beschleunigung		Wechselwirkungsgese	Kommunizieren,	SE/LE: Versuche zur
			tz	Bewerten	Reibung;
		Ø	Grundgesetz der		SE/LE: Quantitative
			Dynamik		Untersuchungen zum
		Ø	Zerlegen und Addieren		Grundgesetz
			von Kräften bei		der Dynamik, z.B.
			einfachen Beispielen		
		Ø	Problemlösung unter		Luftkissenbahn,
			Verwendung des		
			newtonschen		Beschleunigungsseno
		~	Grundgesetzes		r
		Ø	Haft-, Gleit- und		
			Rollreibung		
		C	(qualitativ)		
		Ø	Radialkraft als Ursache		
			einer Kreisbewegung		
		~	(qualitativ)		
		Ø	Luftwiderstandskraft		

15 UE 900 min	3.12 Mechanische Schwingungen und Wellen	Ø	Kenngrößen einer harmonischen Schwingung Darstellung harmonischer Schwingungen in Diagrammen	Fachwissen, Kenntnisse, Kommunizieren, Bewerten	SE/LE: Untersuchung der Abhängigkeit der Periodendauer eines Fadenpendels oder eines
			Dämpfung von Schwingungen		Federschwingers
		Ø	Energieumwandlung bei einem Fadenpendel oder		SE/LE: Untersuchung gedämpfter
			einem Federschwinger		Schwingungen SE/LE: Untersuchung
			Resonanz Kenngrößen		des Phänomens der Resonanz
		Ø	mechanischer Wellen Darstellung mechanischer Wellen		LE: Untersuchung der Eigenschaften von Wellen, z.B. Wasserwellen oder
		Ø	in Diagrammen Reflexion und Brechung		Schallwellen LE: Bestimmung der
		Ø	Beugung und Interferenz mechanischer Wellen		Ausbreitungs- geschwindigkeit der Welle
6 UE	3.13a	Ø	Beugung und	Fachwissen,	LE: Doppelspalt
360 min	Wellenoptik (Natur		Interferenz mit Licht	Kenntnisse,	SE: Wellenlängen
	des Lichts statt Optische Geräte- diese Inhalte sind in den Wahlpflichtbereich verleigt)	Ø	Licht als Welle Wellenlänge des Lichts	Kommunizieren	berechnen

Fächerübergreifende Kompetenzentwicklung – Bezüge zum BC Sprachbildung und BC Medienbildung und übergreifende Themen

Verkehrserziehung:

o Bremsweg in Abhängigkeit von physikalischen und physiologischen Einflüssen in Kooperation mit Mathematik und Biologie

Sprachtraining:

Schreiben von fachsprachlichen Texten

MINT-Vorhaben (fakultativ):

in Pendel geht um die Welt. Foucault und sein Pendel. Wir erfinden das Foucaultsche Pendel neu.

n der Welt der Schwerelosigkeit: Fallturm Bremen. Parabelflug im A300. Experimente unter Schwerelosigkeit

DESY-ZEUTHEN: Teilchenphysik-Masterclasses (Teilnahme bietet Möglichkeit für Teilnahme einzelner Schüler an der

"International Masterclass – hands on particle physics")

Klasse 10: 1 UE = 60 min

[1] Inhaltliche Themenbereiche aus Teil C des Rahmenlehrplans